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Abstract In this paper we improve the semiclassical analysis of loop quantum black hole
(LQBH) in the conservative approach of a constant polymeric parameter. In particular we
focus our attention on the space-time structure. We introduce a very simple modification of
the spherically symmetric Hamiltonian constraint in terms of holonomies. The new quantum
constraint reduces to the classical constraint when the polymeric parameter δ goes to zero.
Using this modification we obtain a large class of semiclassical solutions parametrized by
a generic function σ(δ). We find that only a particular choice of this function reproduces
the Schwarzschild black hole solution outside the black hole with the correct asymptotic
flat limit. In r = 0 the semiclassical metric is regular and the Kretschmann invariant has a
maximum peaked at rmax ∝ lP . The radial position of the peak does not depend on the black
hole mass and the polymeric parameter δ. The semiclassical solution is very similar to the
Reissner-Nordström metric. We construct the Carter-Penrose diagrams explicitly, giving a
causal description of the space-time and its maximal extension. The LQBH metric inter-
polates between two asymptotically flat regions, the r → ∞ region and the r → 0 region.
We study the thermodynamics of the semiclassical solution. The temperature, entropy and
the evaporation process are regular and could be defined independently from the polymeric
parameter δ. We study the particular metric when the polymeric parameter goes towards to
zero. This metric is regular in r = 0 and has only one event horizon in r = 2m. The radial
position of the Kretschmann invariant maximum depends only on lP . As such the polymeric
parameter δ does not play any role in the black hole singularity resolution. The thermody-
namics is the same.

Keywords Black hole · Loop quantum gravity

Introduction

Quantum gravity is the theory attempting to reconcile general relativity and quantum me-
chanics. In general relativity the space-time is dynamical, therefore it is not possible to study
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other interactions on a fixed background because the background itself is a dynamical field.
“loop quantum gravity” (LQG) [1–5] gives as a framework for reconciling general relativity
and quantum mechanics. This is one of the non perturbative and background independent
approaches to quantum gravity. LQG is a quantum geometric fundamental theory that rec-
onciles general relativity and quantum mechanics at the Planck scale and we expect that this
theory could resolve the classical singularity problems of General Relativity. Much progress
has been made in this direction in the last years. In particular, the application of LQG tech-
nology to the early universe in the context of minisuperspace models have solved the initial
singularity problem [6–11].

Black holes are another interesting place for testing the validity of LQG. In the past
years applications of LQG ideas to the Kantowski-Sachs space-time [12, 13] lead to some
interesting results in this field. In particular, it has been showed [14–20] that it is possible to
solve the black hole singularity problem by using tools and ideas developed in the full LQG.
Other remarkable results have been obtained in the non homogeneous case [21–23].

There are also works of semiclassical nature which try to solve the black hole singularity
problem [24–27]. In these papers the authors use an effective Hamiltonian constraint ob-
tained by replacing the Ashtekar connection A with the holonomy h(A) and they solve the
classical Hamilton equations of motion exactly or numerically. In this paper we try to im-
prove the semiclassical analysis introducing a very simple modification to the Hamiltonian
constraint expressed in terms of the holonomies. The main result is that the minimum area
[28–30] of full LQG is the fundamental ingredient to solve the black hole space-time sin-
gularity problem in r = 0. The S2 sphere bounces on the minimum area a0 of LQG and the
singularity disappears. We show that the Kretschmann invariant is regular in all space-time
and the position of the maximum is independent of the mass and of the polymeric parameter
introduced to define the Hamiltonian constraint in terms of holonomies. The radial position
of the curvature maximum depends only on GN and �.

This paper is organized as follows. In the first section we recall the classical Schwarz-
schild solution in Ashtekar’s variables. In the second section we introduce a class of Hamil-
tonian constraints expressed in terms of holonomies that reduce to the classical one in
the limit where the polymer parameter δ → 0. We solve the Hamilton equations of mo-
tion obtaining the semiclassical black hole solution for a particular choice of the quan-
tum constraint. In the third section we show the regularity of the solution by studying
the Kretschmann operator and we write the solution in a very simple form similar to the
Reissner-Nordström solution for a black hole with mass and charge. In section four we
study the space-time structure and we construct the Carter-Penrose diagrams. In section five
we show the solution has a Schwarzschild core in r → 0+. In section six we analyze the
black hole thermodynamics by calculating the temperature, entropy and evaporation. In sec-
tion seven we calculate the limit δ → 0 of the metric and we obtain a regular semiclassical
solution with the same thermodynamic properties but with only one event horizon at the
Schwarzschild radius. We analyze the causal space-time structure and construct the Carter-
Penrose diagrams.

1 Schwarzschild Solution in Ashtekar Variables

In this section we recall the classical Schwarzschild solution inside the event hori-
zon [14–20]. For the homogeneous but non isotropic Kantowski-Sachs space-time the
Ashtekar’s variables [31, 60] are

A = c̃τ3dx + b̃τ2dθ − b̃τ1 sin θdφ + τ3 cos θdφ,
(1)

E = p̃cτ3 sin θ
∂

∂x
+ p̃bτ2 sin θ

∂

∂θ
− p̃bτ1

∂

∂φ
.
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The components variables in the phase space have length dimension [c̃] = L−1, [p̃c] = L2,
[b̃] = L0, [p̃b] = L. The Hamiltonian constraint is

CH = −
∫

Ndx sin θdθdφ

8πGNγ 2

[
(b̃2 + γ 2)

p̃b sgn(p̃c)√|p̃c|
+ 2b̃c̃

√|p̃c|
]
. (2)

Using the general relation Ea
i Eb

j δ
ij = det(q)qab (qab is the metric on the spatial section) we

obtain qab = (p̃2
b/|p̃c|, |p̃c|, |p̃c| sin2 θ).

We restrict integration over x to a finite interval L0 and the Hamiltonian takes the form
[19, 20]

CH = − N

2GNγ 2

[
(b2 + γ 2)

pb sgn(pc)√|pc| + 2bc
√|pc|

]
. (3)

The rescaled variables are: b = b̃, c = L0c̃, pb = L0p̃b , pc = p̃c . The length dimensions
of the new phase space variables are: [c] = L0, [pc] = L2, [b] = L0, [pb] = L2. From the
symmetric reduced connection and density triad we can read the components variables in
the phase space: (b,pb), (c,pc), with Poisson algebra {c,pc} = 2γGN , {b,pb} = γGN . We
choose the gauge N = γ

√|pc| sgn(pc)/b and the Hamiltonian constraint reduce to

CH = − 1

2GNγ

[
(b2 + γ 2)pb/b + 2cpc

]
. (4)

The Hamilton equations of motion are

ḃ = {b, CH } = −b2 + γ 2

2b
, (5)

ṗb = {pb, CH } = 1

2

[
pb − γ 2pb

b2

]
, (6)

ċ = {c, CH } = −2c, (7)

ṗc = {pc, CH } = 2pc. (8)

The solutions of those equations using the time parameter t ≡ √
p0

c e
T and redefining the

integration constant
√

p0
c eT0 = 2m (where p0

c is the integration constant of (8), [p0
c ] = L2)

[14–20] are

b(t) = ±γ
√

(2m/t) − 1,

pb(t) = p0
b

√
t (2m − t),

(9)
c(t) = ∓γmp0

bt
−2,

pc(t) = ±t2.

(p0
b = p̃b/

√
p0

c and p̃b is the integration constant for (6), [p̃b] = L2) This is exactly the
Schwarzschild solution inside and also outside the event horizon as we can verify passing to
the metric form defined by hab = diag(p2

b/|pc|L2
0, |pc|, |pc| sin2 θ) (m contains the gravita-
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tional constant parameter GN ). The line element is

ds2 = −N2 dt2

t2
+ p2

b

|pc|L2
0

dx2 + |pc|(sin2 θdφ2 + dθ2). (10)

Introducing the solution (9) in (10) we obtain the Schwarzschild solution in all space-time
except in t = 0 where the classical curvature singularity is localized and except in r = 2m

where there is a coordinate singularity

ds2 = − dt2

2m
t

− 1
+ (p0

b)
2

L2
0

(
2m

t
− 1

)
dx2 + t2d
(2), (11)

where d
(2) = sin2 θdφ2 + dθ2. To obtain the Schwarzschild metric we choose L0 = p0
b .

In this way we fix the radial cell to have length p0
b and p0

b disappears from the metric. In
the semiclassical LQBH metric p0

b does not disappear fixing L0. At this level we have not
fixed p0

b but only the dimension of the radial cell. This is the correct choice to reproduce the
Schwarzschild solution metric in all space time. We will do the same choice for the semiclas-
sical metric because in that metric the same coefficients p0

b/L0 will appear (this is correct
if we want reproduce the Schwarzschild metric at large distances). With this choice p0

b will
not disappears from the semiclassical metric and in particular from the pc(t) solution. We
will use the minimum area of the full theory to fix p0

b . For the semiclassical solution at the
end of Sect. 4 we will give also a possible physical interpretation of p0

b .
Another way to eliminate p0

b/L0 ≡ β is by a coordinate transformation, x → x/β . This
possibility is viable because the cell volume L0 = ∫ √

0q dx, related to the reference spatial
metric 0qab = diag(1,1, sin2 θ), is invariant under a coordinate changing.

2 A General Class of Hamiltonian Constrains

The correct dynamics of loop quantum gravity is the main problem of the theory. LQG is
well defined at kinematical level but it is not clear what is the correct version of the Hamil-
tonian constraint, or more generically, in the covariant approach, what is the correct spin-
foam model [32–35]. An empirical principle to construct the correct Hamiltonian constraint
is to recall the correct semiclassical limit [36–42]. When we impose spherical symmetry
and homogeneity, the connection and density triad assume the particular form given in (1).
We can choose a large class of Hamiltonian constraints, expressed in terms of holonomies
h(A; δ), which reduce to the same classical one (4) when the polymeric parameter δ goes to
zero. We introduce a parametric function σ(δ) that labels the elements in the class of Hamil-
tonian constraints compatible with spherical symmetry and homogeneity. We call CLQG the
constrain for the full theory and Cσ(δ) the constraint for the homogeneous spherical minisu-
perspace model. The reduction from the full LQG classical theory to the minisuperspace
model is

CLQG → Cσ(δ), (12)

where the arrow represents the spherical symmetric reduction of the Hamiltonian constraint.
To obtain the classical Hamiltonian constraint (4) in the limit δ → 0 we recall that the
function σ(δ) satisfies the following condition

lim
δ→0

σ(δ) = 1 → lim
δ→0

Cσ(δ) = CH . (13)
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We are going to show that just one particular choice of σ(δ) gives the correct asymptotic
flat limit for the Schwarzschild black hole. In fact the asymptotic boundary condition selects
the particular form of the function σ(δ). The model we are going to introduce is inspired by
LQG, we apply the technology introduced in the full theory to a particular reduced model.
Moreover the rigorous mathematical relation between the reduced model and the full theory
is an open problem.

The classical Hamiltonian constraint can be written in the following form

CH = 1

γ 2

∫
d3xεijke

−1EaiEbj
[
γ 2
k

ab −0 Fk
ab

]
, (14)

where 
 = − sin θτ3dθ ∧ dφ and 0F = dK + [K,K] (K is the extrinsic curvature, A =

 + γK and 
 = cos θτ3dφ). The holonomies in the directions x, θ,φ for a generic path �

are defined by

h
(�)

1 = cos
�c

2
+ 2τ3 sin

�c

2
,

h
(�)

2 = cos
�b

2
+ 2τ2 sin

�b

2
, (15)

h
(�)

3 = cos
�b

2
− 2τ1 sin

�b

2
.

We define the field strength 0F i
ab in terms of holonomies in the following way

0F i
abτi = 0ωi

a
0ω

j

b

(
h

(δi )

i h
(δj )

j h
(δi )−1
i h

(δj )−1
j − 1

δ2

)
,

(16)

δi = (δc, σ (δ)δb,σ (δ)δb),

where δi is the length of the curve along which we integrate the connection; δ is the poly-
meric parameter (which disappears in the full LQG theory) which we think to be constrained
by observations. In the right hand side of the field strength there is no sum over the i, j in-
dexes. It’s a simple exercise to verify that when δ → 0 (16) we obtain the classical field
strength. The Hamiltonian constraint in terms of holonomies is

Cσ(δ) = −N

8πG2
Nγ 3δ3

Tr

[∑
ijk

εijkh
(δi )

i h
(δj )

j h
(δi )−1
i h

(δj )−1
j h

(δ)
k

{
h

(δ)−1
k ,V

}

+ 2γ 2δ2τ3h
(δ)

1

{
h

(δ)−1
1 ,V

}]

= − N

2GNγ 2

{
2

sin δc

δ

sin(σ (δ)δb)

δ

√|pc| +
(

sin2(σ (δ)δb)

δ2
+ γ 2

)
pb sgn(pc)√|pc|

}
. (17)

V = 4π
√|pc|pb is the spatial section volume. We have introduced modifications de-

pending on the function σ(δ) only in the field strength but this is sufficient to have a
large class of semiclassical Hamiltonian constraints compatible with spherical symme-
try. The Hamiltonian constraint Cσ(δ) in (17) can be substantially simplified in the gauge
N = (γ

√|pc|sgn(pc)δ)/(sinσ(δ)δb)

Cσ(δ) = − 1

2γGN

{
2

sin δc

δ
pc +

(
sinσ(δ)δb

δ
+ γ 2δ

sinσ(δ)δb

)
pb

}
. (18)

From (18) we obtain two independent sets of equations of motion on the phase space
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ċ = −2
sin δc

δ
,

ṗc = 2pc cos δc,

(19)
ḃ = −1

2

(
sinσ(δ)δb

δ
+ γ 2δ

sinσ(δ)δb

)
,

ṗb = σ(δ)

2
cosσ(δ)δb

(
1 − γ 2δ2

sin2 σ(δ)δb

)
pb.

Solving the first three equations and using the Hamiltonian constraint Cσ(δ), with the time
parametrization

√
p0

c eT = t (see the first section about the length units) and imposing to
have the Schwarzschild event horizon in t = 2m, we obtain

c(t) = 2

δ
arctan

(
∓γ δmp0

b

2t2

)
,

pc(t) = ± 1

t2

[(
γ δmp0

b

2

)2

+ t4

]
,

(20)

cosσ(δ)δb(t) = ρ(δ)

[
1 − ( 2m

t
)σ(δ)ρ(δ)P(δ)

1 + ( 2m
t

)σ(δ)ρ(δ)P(δ)

]
,

pb(t) = −2 sin δc(t) sinσ(δ)δb(t)pc(t)

sin2 σ(δ)δb(t) + γ 2δ2
,

where in the last relation pc(t) sin δc(t) is a constant of motion. We have defined also the
quantities

ρ(δ) =
√

1 + γ 2δ2,

(21)

P(δ) =
√

1 + γ 2δ2 − 1√
1 + γ 2δ2 + 1

.

Now we focus our attention on the term (2m/t)σ(δ)ρ(δ). The choice of this term and in partic-
ular the choice of the exponent will be crucial to have the correct flat asymptotic limit. The
exponent is in the form (2m/t)1+ε and expanding in powers of the small parameter ε ∝ δ2

we obtain (2m/t)1+ε → −(2m/t) log(t/2m) at large distance (t 	 2m) (we remember that
outside the event horizon the coordinate t plays the rule of spatial radial coordinate). It is
straightforward to see that there exists only one possible way to obtain the correct asymp-
totic limit and it is given by the choice σ(δ) = 1/

√
1 + γ 2δ2. In fact only for this choice of

σ(δ) the term log(t/2m) disappears asymptotically for t → +∞ (t is a spatial coordinate
outside the event horizon).

Let as take σ(δ) = 1/
√

1 + γ 2δ2. Since we have the correct large distance limit and
because of the regularity of the curvature invariant on all of space-time, we will extend the
solution outside the event horizons with the redefinition t ↔ r . We will come back to this
extension in the next section.

A crucial difference with the classical Schwarzschild solution is that pc has a minimum
(we consider the plus sign in (20)) in tmin = (γ δmp0

b/2)1/2, and pc(tmin) = γ δmp0
b . The so-

lution has a spacetime structure very similar to the Reissner-Nordström metric and presents
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Fig. 1 Semiclassical dynamical
trajectory on the plane
(|pb|/p0

b
, log(pc)) for positive

values of pc . The dashed
trajectory corresponds to the
classical Schwarzschild solution
and the continuum trajectory
corresponds to the semiclassical
solution. The plot refers to
m = 10, p0

b
= 1/10 and

γ δ = log(4)/π

an inner horizon at

r− = 2mP(δ)2 = 2m

(
2 + γ 2δ2 − 2

√
1 + γ 2δ2

2 + γ 2δ2 + 2
√

1 + γ 2δ2

)
. (22)

For δ → 0, r− = mγ 4δ4/8 + O(γ 6δ6). We observe that the inside horizon position r− �=
2m ∀γ ∈ R (we recall γ is the Barbero-Immirzi parameter). Now we study the trajectory in
the plane (|pb|/p0

b, log(pc)) and we compare the result with the Schwarzschild solution. In
Fig. 1 we have a parametric plot of (|pb|/p0

b, log(pc)); we can follow the trajectory from
t > 2m where the classical (dashed trajectory) and the semiclassical (continuum trajectory)
solution are very close. For t = 2m, pc → (2m)2 and pb → 0 (this point corresponds to the
Schwarzschild radius). From this point decreasing t we reach a minimum value for pc,m ≡
pc(tmin) > 0. From t = tmin, pc starts to grow again until pb = 0, this point corresponds to
a new horizon in t = r− localized. In the time interval t < tmin, pc grows together with |pb|
and as it is very clear from the picture the solution approach the second specular black hole
for t → 0. In particular we have a second f lat asymptotic region for t → 0.

Metric Form of the Solution

In this section we write the solution in metric form and we extend it analytically to the
all space-time. We recall the Kantowski-Sachs metric is ds2 = −N2(t)dt2 + X2(t)dx2 +
Y 2(t)(dθ2 + sin θdφ2). The metric components are related to the connection variables by

N2(t) = γ 2δ2|pc(t)|
t2 sin2 σ(δ)δb

, X2(t) = p2
b(t)

L2
0|pc(t)|
(δ), Y 2(t) = |pc(t)|. (23)

We have introduced 
(δ) through a coordinate transformation x → √

(δ)x,


(δ) = 16(1 + γ 2δ2)2/(1 +
√

1 + γ 2δ2)4. (24)
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This coordinate transformation is useful to obtain the Minkowski metric in the limit t → ∞.
The explicit form of the lapse function N(t)2 in terms of the coordinate t is

N2(t) = γ 2δ2[( γ δmp0
b

2t2 )2 + 1]
1 − ρ2(δ)[ 1−( 2m

t )P(δ)

1+( 2m
t )P(δ)

]2
. (25)

Using the second relation in (23) we can obtain the X2(t) metric component,

X2(t) =
(2γ δm)2
(δ)(1 − ρ2(δ)[ 1− 2m

t P(δ)

1+ 2m
t P(δ)

]2) t2

ρ4(δ)(1 − [ 1− 2m
t P(δ)

1+ 2m
t P(δ)

]2)2[( γ δmp0
b

2 )2 + t4]
. (26)

The function Y 2(t) corresponds to |pc(t)| given in (20). The metric obtained has the cor-
rect asymptotic limit for t → +∞ and in fact N2(t → +∞) → −1, X2(t → +∞) → −1,
Y 2(t → +∞) → t2. The semiclassical metric goes to a flat limit also for t → 0 by a co-
ordinate changing that we will introduce in Sect. 4. We can say that LQBH interpolates
between two asymptotic flat region of the space-time. The metric obtained in this paper
has the correct flat asymptotic limit for t → +∞ and reproduce the Minkowski metric for
m → 0. Those limit are not both satisfied in [24, 25]. The small modification introduced in
the holonomy form of the Hamiltonian is necessary for those two fundamental consistency
limit.

3 LQBH in All Space-Time

In this section we extend the semiclassical (metric) solution obtained in the previous section
to all space-time. As explained in the previous subsection the metric solution has the correct
flat limit for t → +∞ and goes to Minkowski for m → 0. Now we see that the Kretschmann
scalar K = Rμνρσ Rμνρσ is regular in all space-time. In terms of N(t), X(t) and Y (t) the
Kretschmann scalar is

Rμνρσ Rμνρσ = 4

[(
1

XN

d

dt

(
1

N

dX

dt

))2

+ 2

(
1

YN

d

dt

(
1

N

dY

dt

))2

+ 2

(
1

XN

dX

dt

1

YN

dY

dt

)2

+ 1

Y 4N4

(
N2 +

(
dY

dt

)2)2]
. (27)

In Fig. 2 is plotted a graph of K , it is regular in all space-time and the large t behavior is the
classical singular scalar Rμνρσ Rμνρσ = 48m2/t6.

What about p0
b? We fix the parameter p0

b using the full theory (LQG). In particular we
choose p0

b in such way that the position tMax of the Kretschmann invariant maximum is
independent of the black hole mass. This means the S2 sphere bounces on a minimum radius
that is independent of the mass of the black hole and independent of p0

b and depends only
on lP . We consider the solution pc(t) and we impose the minimum area AMin = 4πγ δmp0

b of
the S2 sphere to be equal to the minimum gap area of loop quantum gravity a0 = 4π

√
3γ l2

P .
With the choice γ δmp0

b = a0/4π we obtain a significant physical result. We have not impose
pc(t) to have a minimum in a0 but we have just impose that the minimum of pc(t) is the
minimum area of the full theory. The minimum area of the two sphere is a result and not
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Fig. 2 Plot of the Kretschmann
scalar invariant Rμνρσ Rμνρσ for
m = 10, p0

b
= 1/10 and

γ δ = log(4)/π , ∀t ≥ 0; the large
t behaviour is 1/t6

Fig. 3 Plot of the spectrum of
the operator 1̂/|pc| evaluated on
τγ = pc(t) (where τ is the
eigenvalue of the operator p̂c :
p̂c|τ 〉 = γ l2

P
τ |τ 〉) (dashed line)

compared with the semiclassical
solution 1/pc(t) itself (solid line)

a requirement. We observe that this choice of p0
b fixes the absolute maximum and relative

minimum of pb(t) to be independent of the mass m as is manifest from the plot in Fig. 4.
We can also fix the parameter p0

b without making use of the minimum area gap of the full

theory. The idea is to compare the spectrum of the operator 1̂/|pc| [24, 25] with the semi-
classical solution 1/pc(t) (Fig. 3). More precisely we identify the max eigenvalue of 1̂/|pc|
with the max of the function 1/pc(t). The result is mp0

b = l2
P /2 and then AMin = 4π

√
3γ l2

P
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Fig. 4 Plot of p2
b
(t) for different

values of the mass
(m = 10,15,20). Max (absolute)
and Min (relative) of p2

b
(t) are

independent of the mass m

for δ = 2
√

3 [19, 20]. The minimum area obtained in the minisuperspace framework without
making use of the full theory is exactly the minimum area of full LQG.

We want to provide a heuristic argument to support the choice p0
b ∝ a0/m. In the papers

[43–46] it is shown that the phase space is parametrized by m and the conjugate momentum
pm and it is shown that are both constants of motion (in our notation pm = p0

b). As is usually
done in elementary quantum mechanics to derive the Heisenberg uncertainty relation, we
can introduce the state |φ〉 = (m̂+ iλp̂m)|ψ〉, where m̂ and p̂m are the mass and momentum
operators and λ ∈ R. From the positive norm 〈φ|φ〉 = 〈m̂2〉 + iλ〈[m̂, p̂m]〉 + λ2〈p̂2

m〉 ≥ 0
we have the discriminant, of second order in λ, is negative or zero. The condition on the
discriminant gives 〈m̂2〉〈p̂2

m〉 ≥ −〈[m̂, p̂m]〉2/4. Introducing the commutator [m̂, p̂m] = il2
P

we obtain 〈m̂2〉〈p̂2
m〉 ≥ l4

P /4. We can calculate 〈m̂2〉 on semiclassical Gaussian states,

�(m)m0,p0 = e
− (m−m0)2

4(�m)2 e
ip0m

l2
P

[2π(�m)2]1/4
, (28)

and the result is 〈m̂2〉 = m2
0 + (�m)2. Using the Heisenberg uncertainty relation, 〈m̂2〉 =

m2
0 + (�m)2 := m2 and 〈p̂2

m〉 = p2
0 + (�pm)2 := (p0

b)
2, we obtain mp0

b ≥ l2
P /2, which is

exactly mp0
b ≥ a0/4πγ δ for δ = 2

√
3, a0 = 4π

√
3γ l2

P . We have introduced explicitly all
the coefficients but the main result is p0

b ∝ a0/m. What is presented here is just a heuristic
argument (not a proof) that includes a number of not so obvious hypotheses, however it
shows our choice of p0

b is consistent with [43–46].
At the end of Sect. 4 we will give a physical interpretation of p0

b .
We now want underline the similarity between the equation of motion for pc(t) and the

Friedmann equation of loop quantum cosmology. We can write the differential equation for
pc(t) in the following form

(
ṗc

pc

)2

= 4

(
1 − a2

0

16π2p2
c

)
. (29)
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Fig. 5 Plot of the Kretschmann
invariant Rμνρσ Rμνρσ (m, t) for
m ∈ [0,106], t ∈ [0,0.4]
γ δ = log(4)/π . The first plot
represents the Kretschmann
invariant for small values of m

and the second for m ∈ [0,106],
the variable t is in the range
[0,0.4]

From this equation is manifest that pc bounces at the value a0/4π . This is quite similar to
the loop quantum cosmology bounce [48].

As is evident from Fig. 5 the maximum of the Kretschmann invariant is independent
of the mass and is localized in tMax ∝ √

a0(a0 ∝ l2
P ). At this point we redefine the vari-

ables t ↔ x (with the subsequent identification x ≡ r) to bring the solution in the standard
Schwarzschild form

−N2(t) → grr (r),

X2(t) → gtt (r), (30)

Y 2(t) → gθθ (r) = gφφ/ sin2 θ.

Schematically the properties of the metric are the following,

• lim
r→+∞gμν(r) = ημν,

• lim
r→0

gμν(r) = ημν,
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• lim
m,a0→0

gμν(r) = ημν, (31)

• K(g) < ∞, ∀r,

• rMax(K(g)) ∝ √
a0.

In Sect. 5 we will explicitly introduce the coordinates which remove the coordinate singu-
larities on the event horizons and we will show the metric can be continued analytically to
all of space-time. We consider these properties sufficient to extend the solution in all space-
time. The solution is summarized in Table 1 (in the table we have not fixed the parameter
p0

b).
We have said in the previous section that the metric solution has two event horizons. An

event horizon is defined [47] by a null surface �(r, θ) = const. which extends to spatial
infinity. The surface �(t, r, θ,φ) = const. is a null surface if the normal ni = ∂�/∂xi is a
null vector, if it satisfies the condition nin

i = 0. The last identity says that the vector ni is on
the surface �(t, r, θ,φ) itself, in fact d� = dxi∂�/∂xi and dxi‖ni . The norm of the vector
ni is given by

nin
i = gij ∂�

∂xi

∂�

∂xi
= 0. (32)

In our case (32) reduces to

grr ∂�

∂r

∂�

∂r
+ gθθ ∂�

∂θ

∂�

∂θ
= 0, (33)

and this equation is satisfied where grr (r) = 0 if the surface is independent from θ , �(r, θ) =
�(r). The points where grr = 0 are r− and r+ = 2m.

We can write the metric in another form which is similar to the Reissner-Nordström
space-time:

ds2 = −64π2(r − r+)(r − r−)(r + r+P(δ))2

64π2r4 + a2
0

dt2

+ dr2

64π2(r−r+)(r−r−)r4

(r+r+ P(δ))2(64π2r4+a2
0 )

+
(

a2
0

64π2r2
+ r2

)
d
(2). (34)

If we expand the metric (34) in the parameter δ and the minimum area a0 at the first order
we obtain the Schwarzschild solution: gtt (r) = −(1 − 2m/r) + O(δ2) + O(a2

0), grr (r) =

Table 1 Loop quantum black
hole in the standard
Schwarzschild’s metric form

gμν LQBH Classical

gtt (r)

(2γ δm)2
(δ)

ρ4(δ)
(1−ρ2(δ)(

1− 2m
r P (δ)

1+ 2m
r P (δ)

)2)

(1−(
1− 2m

r P (δ)

1+ 2m
r P (δ)

)2)2[( γ δmp0
b

2r
)2+r2]

−(1 − 2m
r )

grr (r) − γ 2δ2[( γ δmp0
b

2r2 )2+1]

1−ρ2(δ)(
1− 2m

r P (δ)

1+ 2m
r P (δ)

)2

1
1− 2m

r

gθθ (r) (
γ δmp0

b
2r

)2 + r2 r2
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Fig. 6 Plot of −1/grr for r ∈ [0,≈ r−] (in the first picture) and −1/grr for r ∈ [≈ r−,∞[ (in the second
picture). In the plot g11 ≡ grr

Fig. 7 Plot of gtt for r ∈ [0,≈ r−] (in the first picture) and gtt for r ∈ [≈ r−,∞[ (in the second picture).
For r → 0 (and small δ), gtt → −4m4π2γ 8δ8/a2

0 . In the plot g00 ≡ gtt

1/(1 − 2m/r)+O(δ2)+O(a2
0) and gθθ (r) = gφφ(r)/ sin2 θ = r2 +O(a2

0). We have second
order correction to the metric from the polymer parameter δ and also from the minimum
area a0.

To check the semiclassical limit we calculate the perturbative expansion of the curvature
invariant for small δ and a0 and we obtain a divergent quantity in r = 0 at any order of the
development. The regularity of K is a non perturbative result, in fact for small values of the
radial coordinate r , K = 3145728π4r6/a4

0γ
8δ8m2 + O(r7) diverges for a0 → 0. (For the

semiclassical solution the trace of the Ricci tensor (R = Rμ
μ) is not identically zero as for

the Schwarzschild solution. We have also calculated this operator and we have obtained a
regular quantity in r = 0.) We conclude this section showing the independence of the peak
position of Kretschmann invariant from the polymeric parameter δ. We have plotted the
invariant K(δ, r) and we have obtained the result in Fig. 8. From the picture is evident that
the position of the Kretschmann’s invariant maximum is independent of δ.
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Fig. 8 Plot of the Kretschmann
invariant as function of
r ∈ [0,0.5] and the polymeric
parameter δ ∈ [0,1]

Corrections to the Newtonian Potential In this paper we are interested in the singularity
problem of black hole physics and not in the Post-Newtonian approximation, however we
want give the first correction to the gravitational potential. The gravitational potential is
related to the metric through �(r) = −(gtt (r) + 1)/2. Developing the gtt component of the
metric in power of 1/r to the order O(r−7), for fixed values of the parameter δ and the
minimal gap area a0, we obtain the potential

�(r) = −m

r
(P − 1)2 − 4m2

r2
P(P 2 − P + 1)

− 4m3

r3
(P − 1)2 P 2 +

(
8m4 P 4 − a2

0

128π2

)
1

r4

+ ma2
0(P − 1)2

64π2r5
+ m2a2

0 P(1 − P + P 2)

16π2r6
+ O(r−7), (35)

where P ≡ P(δ) is defined in (21).

4 Asymptotic Schwarzschild Core Near r = 0

In this section we study the r → 0 limit of the metric (34). If we develop the metric very
close to the point r = 0 we obtain:

ds2 = −(a − b r)dt2 + dr2

c r4 − d r5
+ d
(2)

cr2
. (36)

The parametric functions a, b, c, d are

a = 64
(δ)m4π2γ 4δ4 P(δ)2

a2
0(1 + γ 2δ2)2

,

b = 128
(δ)m3π2γ 2δ2 P(δ)

a2
0(1 + γ 2δ2)2

, (37)
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c = 64π2

a2
0

,

d = 128π2(1 + γ 2δ2)

a2
0mγ 2δ2 P(δ)

.

We consider the coordinate changing R = 1/r
√

c, t → √
a t . The point r = 0 is mapped in

the point R = +∞. The metric in the new coordinates is

ds2 = −
(

1 − m1

R

)
dt2 + dR2

1 − m2
R

+ R2d
(2), (38)

where m1 and m2 are functions of m,a0, δ, γ ,

m1 = b

a
√

c
= a0

4πmγ 2δ2 P(δ)
,

(39)

m2 = d

c3/2
= a0(1 + γ 2δ2)

4πmγ 2δ2 P(δ)
.

For small δ we obtain m1 = m2 + O(δ2) and (38) converges to the Schwarzschild metric
of mass M = a0/(8πmγ 2δ2 P(δ)) + O(δ2). We can conclude the space-time near the point
r = 0 is described by an effective Schwarzschild metric of mass M ∝ a0/m in the large
distance limit R 	 M . An observer in the asymptotic region close to the point r = 0 exper-
iments a Schwarzschild metric of mass M ∝ a0/m.

We now want give a possible physical interpretation of p0
b . If we reintroduce p0

b ∝ a0/m

in the core mass M defined above we obtain M ∝ p0
b , then we can interpret p0

b as the mass
of the black hole as it is seen by an observer close to r = 0. In [26] the authors interpret p0

b

as the mass of a second black hole, in our analysis instead p0
b seems to be the mass of the

black hole but from the point of view of an observer in the asymptotic region r → 0.

5 Causal Structure and Carter-Penrose Diagram

In this section we construct the Carter-Penrose diagrams [49] for the semiclassical met-
ric (34) omitting the S2 sphere. To obtain the diagrams we will do many coordinate changes
and we enumerate them from one to eight.

(1) We can put the metric (34) in the form ds2 = g00(r(r
∗))(dt2 −dr∗2) (we do not consider

the angular part of the metric) introducing the tortoise coordinate r∗ defined by:

r∗ =
∫ √

−g11

g00
dr

= 1

512π2

[
− 2a2

0

P(δ)2m2r
+ 512π2r + a2

0(P(δ)2 + 1)

P(δ)4m3
log(r)

− a2
0 + 1024π2m4

(P(δ)2 − 1)m3
log |r − r+| + a2

0 + 1024π2 P(δ)8m4

(P(δ)2 − 1)P(δ)4 m3
log |r − r−|

]
. (40)

(2) The second coordinate set to use is (u, v, θ,φ), where u = t − r∗ and v = t + r∗. The
metric becomes ds2 = g00(u, v)dudv.
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(3) The singularity on the event horizon r+ disappears using the coordinates (U+,V +, θ,φ)

defined by U+ = − exp(−k+u)/k+, V + = exp(k+v)/k+, where

k+ = 256π2(1 − P(δ)2)m3

(a2
0 + 1024π2m4)

. (41)

We introduce also the parametric function

k− = 256π2(P(δ)2 − 1)P(δ)4m3

(a2
0 + 1024π2 P(δ)8m4)

. (42)

Note that k+ > 0 and k− < 0. In those coordinates the metric is

ds2 = −64π2(r + r+P(δ))2

64π2r4 + a2
0

(r − r−)
1− k+

k−

× e
− k+

256π2 [− 2a2
0

P(δ)2m2r
+512π2r+ a2

0 (P(δ)2+1)

P(δ)4m3 log(r)]
dU+dV +

= −F(r)2dU+dV +, (43)

where we have introduced the function F(r)2 = −g00(r)(∂u/∂U+)(∂v/∂V +) which is
defined implicitly in terms of U+ and V +.

(4) Using coordinate (t ′, x ′, θ,φ) defined by x ′ = (U+ − V +)/2, t ′ = (U+ + V +)/2, the
metric (43) assumes the conformally flat form ds2 = F(r)2(−dt ′2 + dx ′2). In those
coordinates the trajectories of constant r-coordinate are

U+V + = t ′2 − x ′2 = −e2k+r∗

k2+

= − 1

k2+
(r − r+)(r − r−)

k+
k−

× e
k+

256π2 [− 2a2
0

P(δ)2m2r
+512π2r+ a2

0 (P(δ)2+1)

P(δ)4m3 log(r)]
. (44)

The event horizons r+ and r− are localized in

U+V + = t ′2 − x ′2 = 0, r = r+,
(45)

U+V + = t ′2 − x ′2 → +∞, r = r−.

(5) A first Carter-Penrose diagram for the region r > r− can be construct using coordinates
(ψ,ξ, θ,φ) defined by U+ ∝ tan[(ψ − ξ)/2], V + ∝ tan[(ψ + ξ)/2] and −π ≤ ψ ≤ π ,
−π ≤ ξ ≤ π . The event horizon r = r+ is localized in U+V + = 0 or ψ = ±ξ . The event
horizon r = r− is localized in U+V + = +∞ or: ψ = ±ξ ± π for −π/2 ≤ ξ ≤ 0, ψ =
∓ξ ± π for 0 ≤ ξ ≤ π/2. The other asymptotic regions are: I+, I− (ψ = ∓ξ ± π ), i0

(ψ = 0, ξ = π ), i+ (ψ = π/2, ξ = π/2), i− (ψ = −π/2, ξ = π/2). The Carter-Penrose
diagram for this region is given in the picture on the left in Fig. 9.

(6) In the coordinates introduced above, the metric (34) is not regular in r−. To remove
the singularity in r− we introduce the coordinates (U−,V −, θ,φ) defined by U− =
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Fig. 9 The picture on the left represents the Carter-Penrose diagram in the region outside r− and the picture
on the right the diagram for r− ≤ r ≤ 0

− exp(−k−u)/k−, V − = exp(k−v)/k−. In those coordinates the metric is

ds2 = −64π2(r + r+P(δ))2

64π2r4 + a2
0

(r+ − r)
1− k−

k+

× e
− k−

256π2 [− 2a2
0

P(δ)2m2r
+512π2r+ a2

0 (P(δ)2+1)

P(δ)4 m3 log(r)]
dU−dV −

= −F ′(r)2dU−dV −, (46)

where F ′(r)2 = −g00(r)(∂u/∂U−)(∂v/∂V −). Now the metric is regular in r = r− but
singular in r = r+.

(7) As in the region r > r− we introduce coordinates (t ′′, x ′′, θ,φ) in terms of which ds2 =
F ′2(r)(−dt ′′2 + dx ′′2). The r-constant trajectories are defined by the curves

U−V − = t ′′2 − x ′′2

= − 1

k2−
(r− − r)(r+ − r)

k−
k+ e

k−
256π2 [− 2a2

0
P(δ)2m2r

+512π2r+ a2
0 (P(δ)2+1)

P(δ)4m3 log(r)]
. (47)

In particular the horizons r+, r− and the point r = 0 are defined by the curves

U−V − = t ′′2 − x ′′2 → +∞, r = r+,

U−V − = t ′′2 − x ′′2 = 0, r = r−, (48)

U−V − = t ′′2 − x ′′2 → −∞, r = 0.

(8) In terms of the coordinates (ψ ′, ξ ′, θ,φ) defined by U− ∝ tan[(ψ ′ − ξ ′)/2], V + ∝
tan[(ψ ′ + ξ ′)/2]. The event horizon r = r− is localized in U−V − = 0 or ψ ′ = ±ξ ′, The
event horizon r = r+ is localized in U−V − = +∞ or: ψ ′ = ∓ξ ′ ± π for 0 ≤ ξ ′ ≤ π/2,
ψ ′ = ±ξ ′ ± π for 0 ≤ ξ ′ ≤ π/2. The other asymptotic regions are defined by r = 0:
ψ ′ = ±ξ ′ ∓ π for π/2 ≤ ξ ≤ π and ψ ′ = ±ξ ′ ± π for −π ≤ ξ ′ ≤ −π/2. The Carter-
Penrose diagram for this region is the picture on the right in Fig. 9 (see at the end of this
section for the maximal extension of the solution).
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Fig. 10 Plot of Veff(r). On the left there is a zoom of Veff for r ≈ 0

Now we are going to show that any massive particle could not fall in r = 0 in a finite
proper time. We consider the radial geodesic equation for a massive point particle

(−gtt grr )ṙ
2 = E2

n + gtt , (49)

where “ ˙” is the proper time derivative and En is the point particle energy. If the particle
falls from the infinity with zero initial radial velocity the energy is En = 1. We can write
(49) in a more familiar form

(−gtt grr )︸ ︷︷ ︸
≥0 ∀r

ṙ2 + Veff︸︷︷︸
−gtt

(r) = E︸︷︷︸
E2

n

. (50)

A plot of Veff is in Fig. 10. For r = 0, Veff(r = 0) = 4m4π2γ 8δ8/a2
0 (for small δ) then any

particle with E < Veff(0) could not arrive in r = 0. If the particle energy is E > Veff(0),
the geodesic equation for r → 0 is ṙ2 ∝ r4 and integrating τ ∝ 1/r − 1/r0 or �τ ≡ τ(0) −
τ(r0) → +∞. We can compose the diagrams in Fig. 9 to obtain a maximal extension similar
to the Reissner-Nordström one, the result is represented in Fig. 11.

6 LQBH Thermodynamics

In this section we study the thermodynamics of the LQBH [51–57]. The form of the metric
calculated in the previous section has the general form

ds2 = −g(r)dt2 + dr2

f (r)
+ h2(r)(dθ2 + sin2 θdφ2), (51)

where the functions f (r), g(r) and h(r) depend on the mass parameter m and are the com-
ponents of the metric (34). We can introduce the null coordinate v to express the metric
(51) in the Bardeen form. The null coordinate v is defined by the relation v = t + r∗, where
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Fig. 11 Maximal space-time extension of the LQBH on the right and the analog extension for the Reiss-
ner-Nordström black hole on the left. The maximal extension is obtained by a superimposition of the two
diagrams in Fig. 9 on the sheared region r− ≤ r ≤ r+ = 2m

r∗ = ∫ r
dr/

√
f (r)g(r) and the differential is dv = dt + dr/

√
f (r)g(r). In the new coordi-

nate the metric is

ds2 = −g(r)dv2 + 2

√
g(r)

f (r)
drdv + h2(r)d
(2). (52)

We can interpret our black hole solution as being generated by an effective matter fluid
that simulates the loop quantum gravity corrections (in analogy with the paper [51–57]).
The effective gravity-matter system satisfies by definition of the Einstein equation G =
8πT , where T is the effective energy tensor. The stress energy tensor for a perfect fluid
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compatible with the space-time symmetries is T μ
ν = (−ρ,Pr,Pθ ,Pθ ) and in terms of the

Einstein tensor the components are ρ = −Gt
t/8πGN , Pr = Gr

r/8πGN and Pθ = Gθ
θ/8πGN .

The semiclassical metric to zeroth order in δ and a0 is the classical Schwarzschild solution
(gC

μν ) that satisfies Gμ
ν (gC) ≡ 0.

In the following subsections we calculate the temperature, entropy and evaporation
process for the semiclassical metric (34).

6.1 Temperature

In this paragraph we calculate the temperature for the quantum black hole solution
and analyze the evaporation process. The Bekenstein-Hawking temperature is given in
terms of the surface gravity κ by T = κ/2π , the surface gravity is defined by κ2 =
−gμνgρσ ∇μχρ∇νχ

σ /2 = −gμνgρσ 

ρ

μ0

σ
ν0/2, where χμ = (1,0,0,0) is a timelike Killing

vector and 
μ
νρ is the connection compatibles with the metric gμν of (51). Using the semi-

classical metric we can calculate the surface gravity in r = 2m obtaining and then the tem-
perature,

T (m) = 128πσ(δ)
√


(δ)m3

1024π2m4 + a2
0

. (53)

The temperature (53) coincides with the Hawking temperature in the large mass limit. In
Fig. 12 we have a plot of the temperature as a function of the black hole mass m. The dashed
trajectory corresponds to the Hawking temperature and the continuum trajectory corre-
sponds to the semiclassical one. There is a substantial difference for small values of the mass,
in fact the semiclassical temperature tends to zero and does not diverge for m → 0. The tem-
perature is maximum for m∗ = 31/4√a0/

√
32π and T ∗ = 33/4σ(δ)

√

(δ)/

√
32πa0. Also

this result, as for the curvature invariant, is a quantum gravity effect, in fact m∗ depends only

Fig. 12 Plot of the temperature
T (m). The continuum plot
represent the LQBH temperature
and the dashed line represent the
Hawking temperature
T = 1/8πm
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on the Planck area a0. The limit δ → 0 exists for T (m) and T ∗, it is:

lim
δ→0

T (m) = 128π m3

1024π2m4 + a2
0

,

(54)

lim
δ→0

T ∗ = 33/4

4
√

2πa0
.

6.2 Entropy

In this section we calculate the entropy for the LQBH metric. By definition the entropy as
function of the ADM energy is SBH = ∫

dm/T (m). Calculating this integral for the LQBH
we find

S = 1024π2m4 − a2
0

256πm2σ(δ)
√


(δ)
+ const. (55)

We can express the entropy in terms of the event horizon area. The event horizon area (in
r = 2m) is

A =
∫

dφdθ sin θpc(r)|r=2m = 16πm2 + a2
0

64πm2
. (56)

Inverting (56) for m = m(A) and introducing the result in (55) we obtain

S =
√

A2 − a2
0

4σ(δ)
√


(δ)
. (57)

A plot of the entropy is in Fig. 13. The first plot represents entropy as a function of the event
horizon area A. The second plot in Fig. 13 represents the event horizon area as function
of m. The semiclassical area has a minimum value in A = a0 for m = √

a0/32π . As for
the temperature the limit δ → 0 also exists for the entropy, we can calculate it on the event
horizon area and the Planck area:

lim
δ→0

S =
√

A2 − a2
0

4
. (58)

In the limit a0 → 0, S → A/4.
We want underline the parameter δ does not play any regularization role in the observable

quantities T (m), T ∗, m∗ and in the evaporation process that we will study in the following
section. We obtain finite quantities taking the limit δ → 0. This is an important prediction
of the model.

6.3 The Evaporation Process

In this section we focus our attention on the evaporation process of the black hole mass and
in particular on the energy flux from the hole. First of all, the luminosity can be estimated
using the Stefan’s law and it is given by L(m) = αA(m)T 4

BH(m), where (for a single massless
field with two degree of freedom) α = π2/60, A(m) is the event horizon area and T (m)

is the temperature calculated in the previous section. At first order in the luminosity the
metric (52) which incorporates the decreasing mass as function of the null coordinate v
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Fig. 13 In the first plot we have
the entropy for the LQBH as
function of the event horizon area
(dashed line represents the
classical area low Scl = A/4). In
the second plot we represent the
event horizon area as function
and the mass (dashed line
represents the classical area
Acl = 16πm2)

is also a solution but with a new effective stress energy tensor as underlined previously.
Introducing the results (53) and (56) of the previous paragraphs in the luminosity L(m) we
obtain

L(m) = 4194304m10π3α σ 4
2

(a2
0 + 1024m4π2)3

. (59)

Using (59) we can solve the fist order differential equation

−dm(v)

dv
= L[m(v)] (60)

to obtain the mass function m(v). The result of integration with initial condition m(v = 0) =
m0 is

−n1a
6
0 + n2a

4
0m

4π2 + n3a
2
0m

8π4 − n4m
12π6

n5m9π3α σ(δ)4
(δ)2

+ n1a
6
0 + n2a

4
0m

4
0 + π2 + n3a

2
0m

8
0π

4 − n4m
12
0 π6

n5m
9
0π

3α σ(δ)4
(δ)2
= −v (61)

where n1 = 5, n2 = 27648, n3 = 141557760, n4 = 16106127360, n5 = 188743680. From
the solution (61) we see the mass evaporate in an infinite time. Also in (61) we can take the
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limit δ → 0 obtaining a regular quantity. In the limit m → 0 (61) becomes

n1a
6
0

n5π3α σ(δ)4
(δ)2 m9
= v. (62)

We can take the limit δ → 0 obtaining n1a
6
0/n5π

3α m9 = v. Inverting this equation for small
m we obtain: m = [n1a

6
0/(n5π

3α v)]1/9.

7 The Metric for δ → 0

We have shown in the previous section that some physical observables can be defined inde-
pendently from the polymeric parameter δ. This result entices us to calculate the limit of the
semiclassical metric (34) for δ → 0. We will obtain a regular metric and we will study its
space-time structure. In the quantum theory we can not take the limit δ → 0 because we do
not have weak continuity in the polymeric parameter δ. However the LQBH’metric (34) is
very close to the Reissner-Nordström metric which is not stable and this also suggests that
(34) could also be unstable when we consider non homogeneities [58]. If this is the case
then the horizon r− could disappears from the metric, or in other words by (22), P(δ) → 0.
Another motivation to calculate and to study this extreme limit of the metric is to show
that the polymeric parameter is not the essential ingredient in solving the singularity prob-
lem. The key ingredient is the bounce of the S2 sphere on a minimum area. For δ → 0 the
(|pb|/p0

b, log(pc)) plot is given in Fig. 14. We redefine the metric of section (34) introduc-
ing an explicit dependence on δ (the redefinition is: gμν(r) → gμν(r; δ)). The new metric is
mathematically defined by

lim
δ→0

gμν(r; δ) ≡ gμν(r). (63)

Fig. 14 Plot (|pb|/p0
b
, log(pc))

for δ → 0. The dashed line
represents the classical solution
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The result of this limit gives the following very simple and regular metric,

ds2 = −64π2r3(r − 2m)

64π2r4 + a2
0

dt2 + dr2

64π2r3(r−2m)

64π2r4+a2
0

+
(

a2
0

64π2r2
+ r2

)
d
(2). (64)

This metric has an event horizon in r+ = 2m and this is in accord with the solution for
general values of δ, in fact limδ→0 r− = 0. The question now is to see if the solution is regular
in all space-time and in particular in r = 0. We can calculate the Kretschmann invariant and
we obtain

K(r) = 65536π4r2

(a2
0 + 64π2r4)6

(−6291456a2
0π

6m(2m − r)r12 + 50331648m2π8r16

+ a8
0(15m2 − 24mr + 11r2) − 128a6

0π
2r4(36m2 − 56mr + 17r2)

+ 4096a4
0π

4r8(294m2 − 272mr + 63r2)). (65)

The invariant (65) is regular in all space-time and in particular at r = 0. For a0 → 0 we find
K(r) = 48m2/r6 +O(a2

0) and for r → 0 we have K(r) = (983040m2π4r2)/a4
0 +O(r3) that

shows the non perturbative character of the singularity resolution. From the second picture
in Fig. 17 is evident the r-coordinate of the peak of the curvature invariant K is independent
from of black hole mass. What about temperature, entropy and the evaporation process? We
calculate the surface gravity for the metric (64) and we obtain

κ2 = 65536m6π4

(a2
0 + 1024m4π2)2

. (66)

This result is exactly the same quantity obtained in Sect. 6 but with δ → 0. From this point
the analysis is the same of Sect. 6: temperature, entropy and evaporation are identical to
(54), (58), (61).

Causal Structure and Carter-Penrose Diagrams

In this section we construct the Carter-Penrose diagrams for the metric obtained taking the
limit δ → 0. To obtain the diagrams we must do many coordinate changes and we enumerate
them from one to five.

(1) First of all we calculate the tortoise coordinate r∗ for the metric (64) defined by
dr∗2 = −g11(r)dr2/g00(r),

r∗ = 1

64π2

(
a2

0

4mr2
+ a2

0

4m2r
+ 64π2r − a2

0 log |r|
8m3

+ (a2
0 + 1024m4π2) log |r − 2m|

8m3

)
. (67)

The coordinate (67) reduces to the Schwarzschild tortoise coordinate r∗ = r + 2m log |r −
2m| for a0 → 0. On the other side for r → 0, r∗ → a0/4mr2. Using coordinate (t, r∗, θ,φ)

the metric is

ds2 = g00(r(r
∗))(dt2 − dr∗2) + gθθ (r(r

∗))d
(2), (68)
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Fig. 15 Plot of the Kretschmann
invariant for the metric (64). The
first picture represent K(r) and
the second one K(r,m) for
m ∈ [0,1010] and r ∈ [0,0.6]. It
is manifest the position of the
maximum of K(m, r) is
independent of the mass m

where g00(r(r
∗)) is implicitly define by (67) (from now on we will not write the S2 sphere

part of the metric).
(2) Now we write the metric in the (v,w, θ,φ) coordinates defined by v = t + r∗ and

w = t − r∗. The metric becomes

ds2 = g00(r(r
∗))dvdw = −64π2r3(r − 2m)

64π2r4 + a2
0

dvdw, (69)

where r is defined implicitly in terms of v,w.
(3) We can do another coordinate changes which leaves the two-space conformally in-

variant. The new coordinates (v′,w′, θ,φ) are defined by v′ = v′(v) and w′ = w′(w). The
metric is then

ds2 = −64π2r3(r − 2m)

64π2r4 + a2
0

dv

dv′
dw

dw′ dv′dw′. (70)
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Fig. 16 Plot of gtt (r) for
−∞ < r < +∞. In the picture is
not visible the horizon in r = 2m

(4) We introduce the new coordinates (t ′, x ′, θ,φ) defined by t ′ = (v′ + w′)/2 and x ′ =
(v′ − w′)/2. The metric is

ds2 = 64π2r3(r − 2m)

64π2r4 + a2
0

dv

dv′
dw

dw′ (−dt ′2 + dx ′2). (71)

All the coordinates in the conformal factor are implicitly defined in terms of t ′, x ′.
At this point we choose explicitly the functions v′(v) and w′(w) to eliminate the singu-

larity in r = 2m. Following the analysis of the Schwarzschild case we take v′(v) = exp(v/λ)

and w′(w) = − exp(−w/λ), where 2/λ = 512π2m3/(a2
0 + 1024π2m4). This is also the cor-

rect coordinate changes in our case to eliminate the coordinate singularity at the event hori-
zon. We define the function F 2(r) = −g00(∂v/∂v′)(∂w/∂w′) that in terms of the radial
coordinate r becomes

F 2(r) = −λ2g00(r)e
− (v−w)

λ = −λ2g00(r)e
− 2r∗

λ

= 4

(
a2

0 + 1024π2m4

512π2m3

)2( 64π2r3

64π2r4 + a2
0

)

× e
− 2

λ
[ a2

0
256π2mr

( 1
r + 1

m )+r− a2
0

512π2m3 log(r)]
. (72)

The metric ds2 = F 2(r)(−dt ′2 + dx ′2) is regular on the event horizon. In the coordinates
(t ′, x ′) the event horizon and the point r = 0 are localized respectively in

t ′2 − x ′2 = 0,
(73)

t ′2 − x ′2 → +∞.
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Fig. 17 Carter-Penrose diagram
for the regular space-time
described by the metric (64) in
coordinate (ψ,ξ ), the vertical
and horizontal axes are
respectively ψ and ξ

(5) We conclude writing the metric in the (ψ, ξ, θ,φ) coordinates defined by v′ ∝
tan[(ψ + ξ)/2] and w′ ∝ tan[(ψ − ξ)/2]. The event horizon r = 2m is defined by the
curve t ′2 − x ′2 = v′w′ = 0 and then by ψ = ±ξ . From (73) the point r = 0 is defined
by the curve t ′2 − x ′2 = v′w′ = +∞ or by the segments (ψ = ∓ξ ± π, 0 ≤ ξ ≤ π/2),
(ψ = ±ξ ±π, 0 ≤ ξ ≤ π/2). The other sectors are: I+, I− (ψ = −∓ ξ ±π, −π ≤ ξ ≤ π ),
i0 (ψ = 0, ξ = π ), i+, i− (ψ = ±π/2, ξ = π/2). The Carter-Penrose diagram of the regular
space-time is represented in Fig. 17. The maximal space-time extension is represented in
Fig. 18, the diagram can be infinitely extended in the two directions.

We now show that a massive particle arrives in r = 0 in a finite proper time. The radial
geodesic equation is (dr/dτ)2 = E2

n − 1/grr (τ is the proper time, En the particle energy)
and for r → 0 this reduces to ṙ(1 − 64π2mr3/a2

0E
2
n) = −En. The τ(r) solution is r − r0 −

16π2m(r4 − r4
0 )/E2

na
2
0 = −Enτ and the proper time to fall in r = 0 starting from r0 � 0 is:

�τ = τ(0) − τ(r0) = (1 − 16π2mr3
0 /E2

na
2
0)r0/En. Any massive particle falls in r = 0 in a

finite proper-time interval.
To conclude the analysis we extend the radial coordinate to negative values. The surface

�(r, θ) = r = 0 is a null surface as can be shown following the analysis in Sect. 3 (in
particular grr |r=0 = 0). We can extend the radial coordinate r to negative values because the
space-time is singularity free. The metric is asymptotically flat for r → −∞ and at the order
O(r−2) takes the form

ds2 = −
(

1 − 2m

r

)
dt2 + dr2

1 − 2m
r

+ r2d
(2), r ≤ 0. (74)

Because r ≤ 0 we do not have an event horizon in the negative region. The metric (64) is
regular in all space-time −∞ < r < +∞. The Carter-Penrose diagrams are in Fig. 19.
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Fig. 18 A possible maximal
space-time extension of the
Carter-Penrose diagram in
Fig. 17. In this picture we have
glued four diagrams, two are
placed in vertical and two in
horizontal position. The point in
the center represents i0 for all the
diagrams but with a different
orientation

We can obtain the same results of this section in another equivalent way. Essentially
what we have done in this section is to show that to solve the black hole singularity prob-
lem at semiclassical level it is sufficient to replace the component c(t) with the holonomy
h = exp(δc) without to replace the component b(t) with the relative holonomy. In fact the
solution (64) can be obtained directly from the semi-quantum Hamiltonian constraint

Csq = − 1

2γGN

{
2(sin δc/δ) pc︸ ︷︷ ︸

Quantum Sector

+ (b2 + γ 2)pb/b︸ ︷︷ ︸
Classical Sector

}
. (75)

The constraint (75) is an effective Hamiltonian constraint which is classic in the b,pb sector
but effective in the c,pc sector (N = γ

√|pc|sgn(pc)/b and σ(δ) = 1). The constraint intro-
duced in (17) is not the more general. We can introduce two different polymeric parameter
δb and δc respectively in the directions θ,φ and r obtain the constraint

Cδb,δc = − N

2GNγ 2

{
2

sin δcc

δc

sin(σ (δb)δbb)

δb

√|pc|

+
(

sin2(σ (δb)δbb)

δ2
b

+ γ 2

)
pb sgn(pc)√|pc|

}
, (76)

and N = γ
√|pc|sgn(pc)δb/ sin(σ (δb)δbb). The scalar constraint (75) is obtained taking the

limit

lim
δb→0

C(δb,δc)|δc=δ = Csq . (77)

The main result is that the singularity problem is solved by a bounce of the two sphere
on a minimal area a0. In this case the parameter δ does not play any role in the singularity
problem resolution. It is evident from the Kretschmann invariant (65) which is independent
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Fig. 19 Carter-Penrose diagrams for r ≥ 0 on the left and r ≤ 2m on the right. The lower picture represents a
maximal extension for −∞ ≤ r ≤ +∞ when the two diagrams in the upper part of the picture are identified
in the sheared region 0 ≤ r ≤ 2m
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of δ. The parameter δ is related to the position of the inner horizon and for δ → 0 the horizon
r− disappears.

8 Conclusions and Discussion

In this paper we have introduced a simple modification of the Hamiltonian constraint ex-
pressed in terms of holonomies which gives the metric with the correct semiclassical as-
ymptotic flat limit when the Hamilton equations of motion are solved. We recall that the
LQBH metric is

ds2 = −64π2(r − r+)(r − r−)(r + r+P(δ))2

64π2r4 + a2
0

dt2

+ dr2

64π2(r−r+)(r−r−)r4

(r+r+ P(δ))2(64π2r4+a2
0 )

+
(

a2
0

64π2r2
+ r2

)
(sin2 θdφ2 + dθ2). (78)

We have shown that the LQBH metric (78) has the following properties

1. limr→+∞ gμν(r) = ημν ,
2. limr→0 gμν(r) = ημν ,
3. limm,a0→0 gμν(r) = ημν ,
4. K(g) < ∞ ∀r ,
5. rMax(K(g)) ∝ √

a0.

In particular (see point 5) the position (rMax) where the Kretschmann invariant operator is
maximum is independent of the black hole mass and of the polymeric parameter δ. The met-
ric has two event horizons that we have defined r+ and r−; r+ is the Schwarzschild event
horizon and r− is an inside horizon. The solution has many similarities with the Reissner-
Nordström metric but without curvature singularities. In particular the region r = 0 corre-
sponds to another asymptotically flat region. A massive particle can not arrive in this region
in a finite proper time. A careful analysis shows the metric has a Schwarzschild core for
r → 0 of mass M ∝ a0/m.

We have calculated the limit gμν(δ → 0; r) of the LQBH metric obtaining another metric
regular in r = 0. This solution can be also obtained from (78) taking the limit δ → 0 or more
simply P(δ) = 0 and r− = 0. The result is

ds2 = −64π2r3(r − 2m)

64π2r4 + a2
0

dt2 + dr2

64π2r3(r−2m)

64π2r4+a2
0

+
(

a2
0

64π2r2
+ r2

)
(sin2 θdφ2 + dθ2). (79)

This metric could be see as a solution of the Hamilton equation of motion for the semi-
quantum scalar constraint (75).

Our analysis shows that the singularity problem is solved by a bounce of the S2 sphere
on a minimum area a0 > 0. This happens for both the metrics obtained in this paper, the first
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one of the Reissner-Nordström type (78) and the second one of the Schwarzschild type (79).
The polymeric parameter δ is not the key ingredient in the singularity resolution. The so-
lution (79) has all the good properties of (78) and in particular it is singularity free. This
metric has an event horizon in r = 2m and the thermodynamics are exactly the same as (78).
When we consider the maximal extension to r < 0 we find a second internal event horizon
in r = 0.

We have studied the black hole thermodynamics: temperature, entropy and the evapora-
tion process. The main results are:

1. The temperature T (m) is regular for m → 0 and reduces to the Bekenstein-Hawking
temperature for large values of the mass Bekenstein-Hawking

T (m) = 128πm3

1024π2m4 + a2
0

. (80)

2. The black hole entropy in terms of the event horizon area and the LQG minimum area
eigenvalue is

S =
√

A2 − a2
0

4
. (81)

3. The evaporation process needs an infinite time in our semiclassical analysis but the differ-
ence with the classical result is evident only at the Planck scale. In these extreme energy
conditions it is necessary to have a complete quantum gravity analysis that can allow for
a complete evaporation [50].

T (m), S(A) and the evaporation process equation F (m;m0, a0) = v are regular and inde-
pendent on δ for δ → 0. The result of the limit are physical quantities that depend only on
the Planck area and not on the polymeric parameter.

We want to conclude the discussion with a stimulating observation. In this paper we have
calculated the temperature (80) that in general we can see as a relation between tempera-
ture, mass and the minimum area a0. If we solve (80) for the minimum area we obtain the
universal critical behavior a0 ∝ (Tc − T )1/2 near the critical temperature Tc . The critical
exponent ζ = 1/2 is independent of the mass and from the particular choice of the Hamil-
tonian constraint modification. The critical temperature is the classical Hawking temperature
Tc = 1/8πm [59].

Some Open Problems In this paper we have fixed the p0
b parameter (which comes from the

integration of the Hamilton equations of motion) introducing the minimum area a0 (of the
full theory) in the metric solution. In this way we have obtained a bounce of the S2 sphere on
the minimum area a0. A priori it is not obvious how to obtain the same bounce at the quan-
tum level. However, solving the quantum constraint we believe we will obtain a bounce at a
minimum area a0 ∝ GN�. The QEE contains only dimensionless quantities, the eigenvalues
τ,μ of the operators p̂c , p̂b and the polymeric parameter δ. When we reintroduce the length
dimensions in the QEE we have μ ≡ 2pb/γ l2

P , τ ≡ pc/γ l2
P , then in the quantum evolution

l2
P will play the role played by a0 in the semiclassical analysis and we will have a quantum

bounce of the wave function on a0 ∝ l2
P . This is manifest in the effective Wheeler-DeWitt

equation obtained from the QEE in the limit μ 	 δ, τ 	 δ [19, 20] where a2
0 ∝ l4

P appears
explicitly,

√
pc

∂2�

∂pb∂pc

+ pb

4
√

pc

∂2�

∂p2
b

+ 1

2
√

pc

∂�

∂pb

+ pb

4l4
P

√
pc

� = 0. (82)
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Fig. 20 Carter-Penrose diagram of Fig. 18 with evidenced a light CTC curve in the first diagram and the
light cones along a CTC curve in the second diagram
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However the quantum evolution of a semiclassical Schwarzschild coherent state is an open
problem.

A problem related to the previous one is that we have fixed the integration in the x

direction to a cell of finite volume Lx and this can imply a non scale invariant resolution of
the singularity problem under a rescaling Lx → L′

x [61].
Another problem can be related to the entropy calculation. In fact we obtain a regular

entropy but we do not obtain the usual logarithmic correction. We think it is possible to
solve this problem with a simple modification of the Hamiltonian constraint or taking into
account the possibility that quantum properties of the background space-time alter geometry
near the horizon [62–67].

Other problems could be related to the maximal extension of the space-time. If we ob-
serve carefully the diagram in Fig. 18 we can see that close time-like curve (CTC) are pos-
sible. This is manifest in Fig. 20 where a null CTC is represented by a close black curve. In
the second diagram of Fig. 20 we have represented the light cones along a CTC curve. We
can have CTCs also with just one diagram if we identify the upper and lower extremes of
the diagram (19).
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